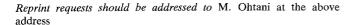
Effects of intravesical instillation of antitumor drugs on the induction of preneoplastic bladder lesions in rats

Mikinobu Ohtani^{1, 3}, Shoji Fukushima¹, Nobuyuki Ito², Kenkichi Koiso², and Tadao Niijima³

- ¹ First Department of Pathology, Nagoya City University Medical School, Nagoya 461, Japan
- ² Department of Urology, Institute of Clinical Medicine, Tsukuba University, Ibaragi 305, Japan
- ³ Department of Urology, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan

Summary. The effects of adriamycin (ADR) and mitomycin C (MMC) as inhibitors of the development of bladder tumors in rats were studied. Six-week-old female F344 rats were divided into nine groups, five of which received 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in their drinking water for the first 4 weeks, no treatment for 1 week, and then intravesical instillation once a week of ADR, MMC, or physiological saline or no instillation (no catheterization) for 12 weeks. The other four groups received no BBN for the first 5 weeks of the experiment and then received ADR, MMC, or physiological saline as above for 12 weeks. The bladders were examined by light microscopy 17 weeks after the beginning of the experiment. Results showed that development of preneoplastic lesions induced in the bladders of the rats by BBN was stimulated by subsequent instillation of ADR or MMC. This result suggests that ADR and MMC have promoting activities in bladder carcinogenesis of rats.

Introduction


Superficial bladder tumors frequently recur [7, 8, 10] and transurethral resection often fails to control their recurrence. Therefore, intravesical instillation of various chemotherapeutic drugs has become a common treatment aimed at inhibition of recurrence [4, 12].

In the present study, the effects of intravesical instillation of adriamycin (ADR) and mitomycin (MMC), which are widely used clinically, on the development of bladder tumors induced in rats by 0.05% *N*-butyl-*N*-(4-hydroxybutyl) nitrosamine (BBN) were examined.

Materials and methods

Chemicals. BBN (Izumi Chemical Co., Yokohama) was administered in drinking water at a dosage of 0.05%. ADR and MMC were kindly supplied by Farmitalia Carlo Erba Co., Ltd, Tokyo and Kyowa Hakko Co., Ltd, Tokyo, Japan, respectively, and were administered intravesically through a catheter.

Animals and experimental design. One hundred twenty-four female Fischer 344 rats (Charles River Japan, Inc., Tokyo, Japan) were divided into nine groups (Fig. 1). Five groups received 0.05% BBN in their drinking water for 4 weeks, no

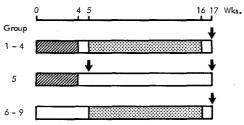


Fig. 1. Experimental design for examining the effects of intravesical instillation of antitumor agents on bladder carcinogenesis in rats. (○ 0.05% BBN in drinking water; (○) intravesical instillation, once a week for 12 weeks, of ADR (1 mg or 0.5 mg/ml), MMC (0.5 mg/ml), or saline (↓) sacrifice

treatment for 1 week, and then an intravesical instillation once a week of 0.3 or 0.15 mg/0.3 ml of ADR, 0.15 mg/0.3 ml of MMC, 0.3 ml physiological saline, or no installation (no catheterization) for 12 weeks. The other four groups (groups 6–9) received no BBN for the first 5 weeks and then ADR, MMC, or physiological saline as above for 12 weeks. Before and 1 h after instillation, the bladder contents were emptied by light abdominal massage under nembutal anesthesia, so that the instilled compounds were retained for 1 h. Rats were killed at the beginning of instillation or 1 week after the end of instillation, namely in week 5 or 17 of the experiment.

Histological observation. A solution of formalin in 10% phosphate buffer (pH 7.4) was injected into the urinary bladder through the urethra. Then the bladder was removed and fixed in the same solution. Each bladder was cut into 12 serial sections, which were stained with hematoxylin and eosin. Bladder lesions were classified as described previously [3, 6, 9]. The number of these bladder lesions was counted in each section and the length of bladder basement membrane was measured with a color video image processor, model IVP-21C, Olympus-Ikegami Tsushin Co., Tokyo, Japan. The numbers of different types of bladder lesions (papillary or nodular hyperplasia, hereinafter referred to as PN, or papilloma) (Fig. 2) were counted by light microscopy, and the number per 10 cm of basement membrane in each group was calculated.

Results

All groups receiving instillation showed growth retardation during the instillation period.

Table 1. Findings in urinary bladder at 17 weeks

Group	Treatment	No. of rats	Papillary or nodular hyperplasia		Papilloma		Cancer
					Incidence (%)	No./10 cm BM	Incidence (%)
			Incidence (%)	No./10 cm BM ^a		<u> </u>	
1	$BBN \rightarrow ADR (1 \text{ mg/ml})$	12	12 (100)°	9.4 ± 8.1 ^{b, d}	3 (25.0)	0.4 ± 0.7	0 -
2	$BBN \rightarrow ADR (0.5 \text{ mg/ml})$	12	10 (83.3)e	$5.0 \pm 6.4^{\rm f}$	1 (8.3)	0.3 ± 1.3	0 -
3	BBN \rightarrow MMC (0.5 mg/ml)	12	6 (50)g	1.5 ± 2.2	1 (8.3)	0.2 ± 0.7	1 (8.3)
4	BBN → Saline	12	1 (8.3)	0.3 ± 0.9	0 -	0	0 -
5	$BBN \rightarrow -$	12	0 -	0	0 -	0	0 -
6	$- \rightarrow ADR (1 \text{ mg/ml})$	12	1 (8.3)	0.3 ± 1.0	0 -	0	0 -
7	$- \rightarrow ADR (0.5 \text{ mg/ml})$	10	0 -	0	0 -	0	0 -
8	$- \rightarrow MMC (0.5 \text{ mg/ml})$	10	0 -	0	0 -	0	0 -
9	– → Saline	12	0 -	0	0 -	0	0 -

^a BM, basement membrane

Values for the following groups were significantly different: groups 1 and 4, $^{c}P < 0.001$, $^{d}P < 0.01$; groups 2 and 4, $^{c}P < 0.001$, $^{t}P < 0.05$; groups 3 and 4, $^{g}P < 0.05$

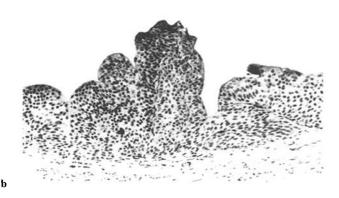


Fig. 2a and b. Bladder lesions: a papillary or nodular hyperplasia; b papilloma

In week 5, that is just before instillation of chemotherapeutic agents into the bladder, 20 rats that had received BBN were examined. Simple hyperplasia was seen in all and PN hyperplasia in three rats, but no rat had papilloma or cancer.

The findings in the urinary bladder in each group at week 17, that is 1 week after the end of instillation of drugs, are summarized in Table 1. Microscopically simple hyperplasia

was found in all rats in the BBN-treated groups. In each of groups 4 and 5 only one rat had PN hyperplasia, and none had papilloma or cancer. Both the incidence and number of PN hyperplastic lesions were significantly higher in rats given ADR at either dose than in rats given saline only (group 4). The incidence of PN hyperplasia was significantly higher in rats given MMC (group 3) than in those given saline (group 4), but the number of PN hyperplasia/10 cm of basement membrane was not significantly different in groups 3 and 4. In BBN-pretreated groups, instillation of ADR or MMC caused papilloma or cancer in a few rats, but no rat had papilloma or cancer in groups 4 or 5, which were given saline by instillation or no instillation. A few rats given ADR or MMC without BBN pretreatment (groups 6, 7, and 8) had simple hyperplasia, and instillation of a high dose of ADR alone induced PN hyperplasia in only one rat. No rats in any of the groups not treated with BBN had papilloma or cancer.

Discussion

Many antitumor drugs have been used clinically for intravesical instillation to eradicate superficial bladder tumors or inhibit their recurrence [4, 12]. Intravesical instillation of ADR or MMC has been reported to reduce the recurrence rate of tumors after transurethral resection [1, 5, 11, 13]. However, in animal experiments, the prophylactic effects of intravesical instillation of ADR, MMC, or thio-TEPA was not clear [14].

PN hyperplasia of the bladder in rats treated with carcinogens develops before the induction of papilloma and cancer, and there is a good correlation between the induction of PN hyperplasia and cancer. It is clear that PN hyperplasia is a preneoplastic lesion of the rat bladder [2, 3, 6]. The present short-term experiment was performed to evaluate the effects of intravesical instillation of ADR and MMC on bladder carcinogenesis in rats: the effects of these chemicals on the induction of the preneoplastic lesions rather than on advanced stages of bladder carcinogenesis were examined.

We anticipated that ADR and MMC would inhibit bladder carcinogenesis. Unexpectedly, however, we found that intravesical instillation of ADR at a high dose or of MMC significantly increased the incidence and the number of preneoplastic lesions of the bladder. Moreover, treatment with

b Means ± SD

ADR at a lower dose significantly increased the incidence of preneoplastic lesions. These results indicated that under these conditions ADR and MMC were promoters of bladder carcinogenesis. These results were not consistent with those in humans. Further studies on this discrepancy are required and long-term follow-up studies are required to clarify the effects of intravesical instillation of these chemotherapeutic agents in humans and animals. An experiment in rats with longer observation periods after the end of instillations of ADR and MMC is in progress.

Acknowledgements. The work described in this paper was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, and a grant to the Society for Cancer Research from the Ministry of Health and Welfare of Japan.

We thank Farmitalia Carlo Erba Co. Ltd, Tokyo, Japan for providing Adriamycin and Kyowa Hakko Co. Ltd, Tokyo, Japan for a gift of mitomycin C.

References

- Banks MD, Pontes, JE, Izbicki RM, Pierce JM (1977) Topical instillation of doxorubicin hydrochloride in the treatment of recurring superficial transitional cell carcinoma of the bladder. J Urol 118: 757
- Cohen SM, Jacobs JB, Arai M, Johansson S, Friedell GH (1976)
 Early lesions in experimental bladder cancer: Experimental design and light microscopic findings. Cancer Res 36: 2508
- Fukushima S, Murasaki G, Hirose M, Nakanishi K, Hasegawa R, Ito N (1982) Histopathological analysis of preneoplastic changes during N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder carcinogenesis in rats. Acta Pathol Jpn 32: 243

- 4. Grossman HB (1979) Current therapy of bladder carcinoma. J Urol 121:1
- Horn Y, Eidelman A, Walach N, Ilian M (1981) Intravesical chemotherapy in controlled trial with thio-TEPA versus doxorubicin hydrochloride. J Urol 125: 652
- Ito N (1976) Early changes caused by N-butyl-N-(4-hydroxybutyl)nitrosamine in the bladder epithelium of different animal species. Cancer Res 36: 2528
- Lutzeyer W, Rübben H, Dahm H (1980) Prognostic parameters in superficial bladder cancer: An analysis of 315 cases. J Urol 127: 250
- 8. Mostofi FK (1956) A study of 2,678 patients with initial carcinoma of the bladder. I. Survival rates. J Urol 75:480
- Nakanishi K, Hagiwara A, Shibata M, Imaida K, Tatematsu M, Ito N (1980) Dose response of saccharin in induction of urinary bladder hyperplasias in Fischer 344 rats pretreated with N-butyl-N-(4-hydroxybutyl)nitrosamine. JNCI 65: 1005
- National Bladder Cancer Collaborative Group A (1977) Surveillance, initial assessment, and subsequent progress of patients with superficial bladder cancer in prospective longitudinal study. Cancer Res 37: 2907
- Prout GR, Griffin PP, Nocks BN, Defuria MD, Daly JJ (1982) Intravesical therapy of low-stage bladder carcinoma with mitomycin C: Comparison of results in untreated and previously treated patients. J Urol 127: 1096
- 12. Soloway MS (1980) Rationale for intensive intravesical chemotherapy for superficial bladder cancer. J Urol 123:461
- Soloway MS, Murphy WM, Defuria MD, Crooke S, Finebaum P (1981) The effect of mitomycin C on superficial bladder cancer. J Urol 125:646
- Soloway MS, Nissenkorn I, McCallum LW, Murphy WM (1982)
 Single and sequential combination intravesical chemotherapy of murine bladder cancer. Urology 19: 169